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BIRD’S-EYE VIEW OF CUE INTEGRATION   

 

Abstract 

Solving problems in educational settings, as in daily-life scenarios, involves constantly 

assessing one’s own confidence in each considered solution. Metacognitive research has 

exposed cues that may bias confidence judgments (e.g., familiarity with question terms). 

Typically, metacognitive research methodologies require examining misleading cues one-

by-one, while recent research has revealed integration of multiple cues stemming from the 

same stimuli. However, this research leaves open important questions about including the 

weight balance among cues and their changes across task design (e.g., instructions) and/or 

population characteristics (e.g., background knowledge). The present study presents the 

Bird’s-Eye View of Cue Integration (BEVoCI) methodology. It is based on hierarchical 

multiple regression models, allowing efficient exposure of multiple biases at once, their 

relative weights, and their malleability across task designs and populations. Notably, the 

BEVoCI can be applied both to planned studies and to existing datasets. I demonstrate its 

application in both ways. In Experiment 1 and Experiment 2, I introduce two nonverbal 

problem-solving tasks, the Comparison of Perimeters (CoP) and the novel Missing Tan 

Task (MTT), while Experiment 3 reanalyzes data collected by others, comprising algebra 

problems solved by children and adults. The experiments demonstrate exposing biases, 

their malleability across conditions, and the non-straightforward association between 

performance improvement and overcoming biases; and the results of Experiment 3 provide 

strong support for the generalizability of the methodology. Pinpointing sources of bias is 

essential for guiding educational design efforts. 
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1. Introduction 

When answering knowledge questions in a conversation, in the classroom, during 

homework, or in an exam, a confidence judgment is the self-assessed chance that each 

considered answer is correct. These metacognitive judgments of confidence, like judgments 

of learning, are expected to be in line with actual success so long as the heuristic cues they 

are derived from are reliable in the specific case at hand (Koriat, 1997). It is well-

established that people who are better at monitoring their knowledge have better real-life 

outcomes than those whose monitoring is less accurate (see Kleitman & Moscrop, 2010). It 

is also known that reliable metacognitive judgments regarding each task item (e.g., a 

homework question) are important for effective self-regulated learning (see Bjork et al., 

2013; de Bruin et al., 2020; Fiedler et al., 2019). Therefore, among the central aims of 

educational task design are to identify sources of systematic bias stemming from 

misleading heuristic cues (e.g., Chen et al., 2018; see Scheiter et al., 2020, for a review); to 

identify differences in biases between learners and conditions (e.g., Händel et al., 2020); 

and to help learners overcome these biases (see Sweller et al., 2019, for a review). Knowing 

the factors that generate biases across designs and contexts is thus a prerequisite for 

educators’ efforts to improve learners’ sensitivity to pitfalls.   

Importantly, existing methodologies in metacognitive research tend to examine 

hypothesized biasing cues one-by-one—a limitation that impedes our understanding of how 

these cues interact, and how their balance changes under different conditions. The same is 

true for studies that attempt to overcome such biases. These studies typically either deal 

with one biasing factor—e.g., one item characteristic or task design feature—at a time (e.g., 

Castel, 2008; Koriat & Bjork, 2006; Yan et al., 2016); or they examine global success and 

monitoring, but not the effects of eliminating specific cue-related biases (e.g., Ariel et al., 

2021; Baars et al., 2014; Raaijmakers et al., 2019; Tauber et al., 2018; Thiede et al., 2022). 

Thus, these studies overlook the possibility that improvement techniques may overcome 

some biases but not others and may even generate new biases.  

The present study presents a new data analysis approach, the Bird’s-Eye View of Cue 

Integration (BEVoCI). This methodology is based on hierarchical multiple regression 

models, and it offers a fourfold advantage over existing methodologies. First, it allows 

systematic and efficient analysis of several cues at the same time with one group of 
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participants. Second, it allows exposing the integration of these cues while considering the 

relative weights of each cue. Third, it efficiently enables exposing biases by comparing 

how cues are utilized for metacognitive judgments relative to their prediction of an 

objective measure of success. Finally, Ackerman (2019) differentiated between heuristic 

cues at the item level (level c), task level (level b), and individual level (level a). 

Particularly, she pointed out the often-overlooked possibility that such contextual factors 

may affect how cues are utilized. The BEVoCI methodology enables considering the 

malleability of cues, their integration, and biases across such contextual characteristics.  

The present study deals with the still relatively new research domain of meta-

reasoning (Ackerman & Thompson, 2017). So far, our understanding of biases in 

metacognitive judgments comes mostly from meta-memory tasks, involving either 

memorization or knowledge retrieval (Bjork et al., 2013). Memory tasks involve coming up 

with a specific target item that participants have encountered before. Meta-reasoning 

research generalizes well-established principles from meta-memory (Ackerman & 

Thompson, 2015), but adds metacognitive elements unique to reasoning and problem-

solving. For instance, the solving process might require applying skills acquired in different 

contexts (e.g., using math-based thinking to address an engineering challenge). Thus, meta-

reasoning processes constantly monitor the current state of the problem-solving process and 

control self-regulated effort investment (see Ackerman & Thompson, 2017, for a review).  

I begin by introducing relevant concepts and classic methods for identifying cues that 

underlie and may bias metacognitive judgments. I then introduce the BEVoCI data analysis 

approach, the main contribution of the present study. In the empirical part of the paper, I 

apply the BEVoCI approach to three different tasks, in order to demonstrate the 

generalizability of the method and the insights it provides, as well as to inspire future 

research.  

1.1. Cue Validity and Cue Utilization: Identifying Biasing Factors 

Brunswik’s lens models are conceptual models accompanied by statistical tools that 

enable assessing the extent to which a set of information sources (hereafter, “cues”) predict 

actual performance compared to subjective judgments. These models have been widely 

applied to teachers’ judgments. For instance, they have been used to discover factors that 



3 
 

 

underlie and might distort teachers’ subjective evaluations of students’ performance (e.g., 

bin Mohd Noh & bin Mohd Matore, 2019; Kaufmann, 2022).  

Applying this approach to metacognitive judgments, Koriat (1997) differentiated 

between cue validity, the objective predictive value of a cue for success, and cue 

utilization—the effect of the same cue on metacognitive judgments. Using well-defined 

tasks which have decisive correct responses (e.g., exam questions, rather than flexible 

design tasks) allows exposing discrepancies between the two, which reflect systematic 

biases. For instance, Ackerman et al. (2013) compared participants’ subjective assessments 

of how well they understood solution explanations. The examined cue was the presence 

versus absence of non-informative illustrations. The results showed that when explanations 

included illustrations, participants reported higher metacognitive judgments of 

understanding but had lower actual success rates than in the absence of illustrations. Such 

predictable biases are expected to reduce the efficiency of regulatory decisions (e.g., 

whether to continue studying) in self-regulated learning and thinking because people base 

these decisions on distorted self-assessments of their knowledge (e.g., Desender et al., 

2018; Dunlosky & Rawson, 2012; Metcalfe & Finn, 2008).  

Biases in metacognitive judgments have been found with many types of tasks. For 

instance, semantically related word pairs (kite – sky) are easier to remember than unrelated 

ones. In general, this fact is reflected in learners’ judgments of learning (JOL; e.g., Mueller 

et al., 2013; see Undorf et al., 2018). However, the effect of relatedness on JOL was found 

to be stronger when related and unrelated word pairs were intermixed than when presented 

in separate lists (Koriat et al., 2009). This context effect represents a level b cue in 

Ackerman’s (2019) taxonomy. In other cases, metacognitive judgments have been 

influenced by factors that in reality either do not affect success, or influence success and 

judgments differently (e.g., concreteness, Markovits et al., 2015; overt vs. covert retrieval, 

Tauber et al., 2018).  

One type of bias that is difficult to identify is when people get the direction of a cue 

effect right, but under- or overestimate its size. An example is font-size: larger fonts (e.g., 

48 points) tend to increase judgments of learning relative to smaller fonts (e.g., 18 points). 

This is the case even though success is often unaffected by font size (Rhodes & Castel, 

2008). When a larger font size does increase success, it was found to disproportionately 
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inflate judgments of learning (e.g., Halamish, 2018; Undorf et al., 2018). The BEVoCI 

method allows us to expose such biases and compare them statistically across conditions.   

1.2. Cue Integration: Exposing Multiple Biases at Once 

Recent research suggests that people integrate multiple cues in their metacognitive 

judgments of their chance to succeed. That is, their judgments reflect several task and 

situation characteristics that may affect success. By definition, cue integration is specific to 

the confluence of a particular person, task, and context. Thus, in terms of research 

methodology, cue integration is best studied when a single sample faces a single task. 

Previous studies have documented extensive integration of 4-5 cues for meta-memory 

judgments, with all cues varying across items within participants (Undorf & Bröder, 2021; 

Undorf et al., 2018). Notably, in those studies Brunswik’s lens models were used to assess 

the overall validity of judgments based on the combined set of cues. However, the relative 

weights of the cues which together underlie the metacognitive judgment remained a black 

box. 

The BEVoCI method offered here allows opening this black box, exposing the 

relative weights of the cues—i.e., determining which one(s) dominate others—when 

predicting separately success and confidence (or any other metacognitive judgment) in each 

condition. It is based on hierarchical multiple linear regression models, which enable 

identifying the unique contribution of each cue while controlling for other cues. It also 

supports exposing confidence biases by statistically comparing cue weights between 

predictions of success and confidence; a significant difference indicates a bias. Three types 

of biases are possible: (i) a cue predicts either success or confidence, but not both; (ii) it 

predicts both, but with significantly different weights; or (iii) it predicts both but in 

opposite directions. Finding several types of biases within one condition points to a double 

dissociation between success and confidence because they together indicate that different 

factors uniquely affect each one.  

The ultimate aim of the BEVoCI is to help educators identify misleading factors in 

combinations of task items, task design, and populations. The BEVoCI also aims to inform 

intervention designers about remaining biases after an improvement attempt. Thus, the 

BEVoCI supports a realistic assessment of the costs and benefits of intervention programs. 
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1.3. Overview of the Experiments  

As in memory tasks, reasoning and problem-solving research employ mostly verbal 

stimuli (Ackerman & Thompson, 2017). As a result, evidence for cue utilization has been 

obtained mainly with semantic cues (e.g., word association nets, Ackerman & Beller, 2017; 

word concreteness, Markovits et al., 2015). The present study uses two visual reasoning 

tasks new to metacognitive research, which are based on geometric shapes. Experiment 1 

employs an extended version of the Comparison of Perimeters (CoP) task inspired by an 

educational research methodology introduced by Stavy and Babai (2008). Experiment 2 

introduces the Missing Tan Task (MTT), which involves identifying the geometric shapes 

hidden in silhouettes. It is based on the Tangram game (https://en.wikipedia.org/wiki/Tangram), 

which has also been used for educational research (Bohning & Althouse, 1997; Lee et al., 

2009). Both tasks call for spatial reasoning processes such as those involved in design, 

navigation, engineering, and when learning geometry (e.g., Hart et al., 2017; Roll et al., 

2014; Zak et al., 2021). Relative to verbal reasoning tasks, the roles of vocabulary and 

semantic knowledge are reduced. In addition, the task versions developed for this study do 

not allow physical manipulation of shapes. These factors put a large burden on mental 

imagery and visuospatial working memory (e.g., manipulating mental images; see Bates & 

Farran, 2021; Castro-Alonso et al., 2019; Träff et al., 2019, for reviews). Thus, the present 

study contributes the two nonverbal tasks alongside its main contribution—the BEVoCI 

methodology. These tasks are described in detail in the introduction and method sections of 

each experiment. 

The visual tasks used here allow considering cues known based on past research (e.g., 

response time, serial order), together with novel cues hypothesized to generate biases 

specific to such stimuli (e.g., perimeter, number of edges). Exposing unknown misleading 

cues carries theoretical and practical implications expected to guide future basic and 

applied research. From a research methodology perspective, the two visual tasks have the 

following advantages: (i) they can be used without concern for language limitations; (ii) 

they allow for generating items at a large variety of objective and subjective difficulty 

levels; (iii) dozens of items can be solved in less than half an hour, supporting robust 

within-participant statistical analyses; (iv) they support variations in task design and 
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instructions; and (v) they provide opportunities for identifying multiple potentially 

misleading heuristic cues within the same task.  

Clearly, though, the BEVoCI methodology is well-suited to any other task that fits 

the task choice criteria detailed below. To demonstrate this generalizability, Experiment 3 

comprises a reanalysis of a dataset collected by others (Vuorre and Metcalfe, 2022; see 

below), who employed algebra problems used in school curricula. All three tasks were used 

in this study in multiple-choice test formats, and thus most invested time was devoted to 

mental manipulation and thinking.  

The global dependent variables in all experiments were the classic metacognitive 

research measures (see Ackerman et al., 2016, for details regarding these measures)—

namely success, confidence, response time (thinking time), and several associations 

between these measures: efficiency (correct responses per minute of work); overconfidence 

(mean confidence minus participants’ success rate as a percentage); and resolution (the 

within-participant success–confidence gamma correlation, reflecting confidence 

discrimination between correct and wrong responses). In the algebra dataset, response time 

was not documented, and thus it and efficiency (correct responses per unit of thinking time) 

are missing from the analyses. The main dependent variables, though, were the beta 

coefficients of the various cues examined for each task by the hierarchical multiple 

regression models, using the BEVoCI method.  

2. Experiment 1: Biasing Cues and The Effects of Knowledge and Instruction 

This experiment consists of three sub-experiments with five groups altogether, using 

the Comparison of Perimeters (CoP) task. In the basic version of the task, used in Exp1a, 

participants were presented with two geometric shapes generated from squares and had to 

decide which, if either, shape had a longer perimeter. The CoP variation developed for this 

set of experiments was inspired by Stavy and Babai (2008) who developed it as an 

educational task for schoolchildren. Stavy and Babai designed the perimeter lengths to be 

either congruent or incongruent with the shape areas. See the left-hand examples in Figure 

1. The present study, designed for adults, used both the original stimuli and new stimuli 

that were more complex in several respects while retaining the misleading nature of the 

task. For example, one shape in each pair was rotated by 90º relative to the other. See the 

right-hand examples in Figure 1 and more details below. Notably, the characteristics of this 
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task make it particularly suited for psychometric, math education, and rationality research 

and practice (e.g., Morsanyi et al., 2018; Stanovich et al., 2016; Toplak et al., 2014). Thus, 

as required in typical exam contexts, participants were instructed to focus on efficiency 

(i.e., accuracy plus speed). 

       Figure 1 
Examples of Comparison of Perimeters items. 

 
Note. The left-hand (gray) items were used by Stavy and Babai (2008). The percentages are 
success rates in their study. Congruency exists when the shape with a longer perimeter in 
the pair also has a larger area. Pairs are considered more complex if both shapes have 
missing or added squares relative to the 12-square underlying basic rectangle. The right-
hand (dark) items were used in the present study, in addition to Stavy and Babai’s (2008) 
items. The dark items may be congruent (top two) or incongruent (bottom two), but all are 
complex. In addition, in the dark items shown, one of the two shapes in each pair is rotated 
by 90° relative to the other. 
 

Exp1a was conducted with an online sample of adults from the general public. The 

study’s first aim was to examine the extent of the bias in that population given the 

incongruency between the shape’s perimeter length and its area. Notably, Stavy and Babai 

(2008) showed the area to be misleading for success, while I focus here on its biasing 

power for confidence. Based on findings with other misleading tasks (e.g., the "Bat and 

Ball" famous problem, De Neys et al., 2013), I expected confidence not to properly reflect 

the challenge generated by area differences when comparing perimeters. A second aim was 
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to identify other cues, either inherent to the task or manipulated, underlying confidence, 

based on metacognitive theorizing. Identifying these cues has thus far required separate 

experiments to expose each cue’s biasing power, and to demonstrate the difference between 

its effects on confidence and on success in the task (see Ackerman, 2019, for a review). The 

BEVoCI method allows for several potential cues to be examined within one task and one 

sample. Notably, this method allows cues that are not misleading—i.e., that are reflected 

properly in confidence—to be identified as well. See Figure 2, Panel A for an example of 

the main task screen. 

Exp1b was conducted with a population of advanced undergraduate engineering 

students. These students have vast experience with challenging, mathematically oriented 

thinking tasks. One group received a close replication of Exp1a with a 2-shapes 

comparison. Thus, comparing this group of Exp1b to the general public sample of Exp1a 

allowed examining cue integration in light of individual differences (level c in Ackerman’s 

[2019] taxonomy). However, critiques regarding commonly used measures of monitoring 

accuracy have highlighted the effects of performance level on the measurement of 

resolution and calibration (Fleming & Lau, 2014; Higham & Higham, 2019). Hence, when 

comparing findings across populations and conditions, difficulty levels should, where 

possible, be kept at comparable levels, to avoid mistakes in interpreting the results. 

Towards this end, the stimuli used in Exp1b varied in both height and rotation angle, as 

detailed below (Figure 2, Panel B).  
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Figure 2 
Screenshots of the Comparison of Perimeters (CoP) tasks used in the present study. 

 
Note.  In Panel A the shapes are derived from the 12 squares (in a 3X4 pattern) underlying 
the basic rectangle, and one of the two shapes is rotated by 90°. The rotation manipulation 
was used for all stimuli in Exp1a and Exp1c, and for some items in Exp1b. Panel B 
demonstrates the height manipulation used in Exp1b, in which each square’s height was 
shrunk by 50%, turning them into rectangles. Panel C presents the 3-shapes condition used 
in Exp1b, with the middle shape in this case having the longest perimeter. 
 

The results of Exp1a indicated, as reported below, that items where the correct 

answer was EQUAL (as in Figure 2, Panel B)—were more difficult than others. To 

eliminate this answer option while making minimal changes to the task, the second student 

group of Exp1b received a variation with three shapes. See Figure 2, Panel C. The 3-shapes 

version had the same left and right shapes as before, with answer options LEFT, MIDDLE, 

and RIGHT. When the left and right shapes had equal perimeters, and only in that case, the 

middle one had a longer perimeter than the others. Thus, the position of the correct 

response always remained as in the 2-shapes version, with MIDDLE replacing EQUAL. I 

hypothesized that although the visual load was greater with three shapes than with two, 

identifying longer perimeters in the central shapes would be easier than identifying equal 

A B 

C 
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perimeters. Within Exp1b, comparing two similar task designs—more (2-shapes) and less 

(3-shapes) misleading—allowed comparing cue integration within the same population.  

Exp1c was similar to Exp1a, with another sample from the general public. However, 

unlike Exp1a, it included detailed instructions intended to improve success rates, by 

providing visual and verbal explanations of how to systematically count perimeter units, 

which people are unlikely to apply spontaneously (Galili et al., 2020). The aim was to 

mimic instructions that accompany new skills being taught or tasks being explained to 

novices in educational and work contexts, without mentioning any particular misleading 

cues. One group was instructed to focus on efficiency, as in Exp1a and Exp1b, and the 

other was instructed to focus specifically on accuracy. The emphasis on accuracy was 

expected to reduce efficiency but promote success. The detailed instructions and the 

emphasis on success were also hypothesized to promote depth of processing, which has 

been associated in the metacognitive literature with better resolution, mainly in reading 

comprehension tasks (e.g., Dunlosky & Rawson, 2005; Thiede et al., 2003), and with 

attenuated overconfidence in computerized task performance (Lauterman & Ackerman, 

2014; Sidi et al., 2017). As in Exp1b, in Exp1c biases were expected to be attenuated 

relative to Exp1a here due to the instructions. Given the results of Exp1b (see below), only 

rotation was used as an additional manipulation, and not height. All these variations were 

designed to examine whether population and instructional design differences would affect 

cue validity, cue utilization, and the resultant confidence biases.  

The following cues were examined for the CoP task with its variations. The first five 

cues apply to all groups: 

1. Serial order. The stimuli were presented in a random order generated for each 

participant. Typically, in metacognitive research serial order is either ignored or controlled 

for, as the focus of such research is mostly on item-level processes. Indeed, in the present 

study as well, controlling for this factor allows us to understand the net effects of other 

cues. In addition, some findings do point to dissociations between how experience with the 

task affects success and metacognitive judgments (e.g., Castel, 2008; Kornell & Hausman, 

2017; Lauterman & Ackerman, 2014). Examining serial order as a cue can expose both 

objective and subjective effects of learning from experience, and/or fatigue generated by 

facing more than fifty items one after the other for about twenty minutes.  
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2. Perimeter–area congruency. Area is the misleading cue suggested by Stavy and 

Babai (2008), as demonstrated in Figure 1. Congruency with the perimeter is a predictor of 

success that should be reflected in confidence for it to be reliably utilized. Based on the 

analyses done by Stavy and Babai, I expected confidence to be insufficiently sensitive to 

the effect of perimeter–area congruency on success. 

3. Basic shape area. The basic rectangular shape adapted from Stavy and Babai 

(2008) was composed of 12 identical small squares arranged in a 3X4 pattern, with squares 

removed or added on one side only (see Figure 1). In the present study, to increase the 

challenge, half the items consisted of 24 squares in a 6X4 arrangement, and squares were 

removed or added on two sides, as part of efforts to increase the task’s complexity for adult 

samples. Differences in the basic underlying shape (12 or 24 squares) were expected to be 

salient, and thus affect the correspondence between confidence and success. However, the 

degree of this correspondence was unknown. 

4. Difference in edges. Shapes with more edges (or corners) than others do not 

necessarily have longer perimeters. See Figure 1 and Figure 3. In general, the more edges 

the longer gets the perimeter relative to basic rectangular. However, this is not always the 

case (see incongruent examples given by Stavy & Babai, 2008 in Figure 1). I expected that 

the greater the difference in the number of edges between the compared shapes, the easier it 

would be to identify which shape had a longer perimeter. The question of interest was to 

what extent confidence reflects this pattern. 

5. Response time. Time elapsed from when a problem is displayed until participants 

select their response. This is the most commonly examined cue in metacognitive research, 

associated with fluency. Overall, both memory and reasoning tasks typically show a 

negative correlation between response time and metacognitive judgments, reflecting the 

fact that easy items are processed more quickly than challenging items (e.g., Baars et al., 

2020; Koriat et al., 2006; Undorf & Erdfelder, 2015). Ackerman and Zalmanov (2012) 

demonstrated that response time can be a biasing cue when task items are misleading, with 

a stronger effect on confidence than on success. From a statistical point of view, unlike the 

case with other cues, each participant has a different spread of response times across items, 

with self-paced quick and slow response times. The hierarchical multiple regression models 

used for the BEVoCI analysis naturally address this statistical complexity. Another aspect 
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unique to BEVoCI is that including response time in models in addition to other cues 

exposes its unique contribution above and beyond other cues expected to be associated with 

item difficulty (or complexity). 

Additional cues: As mentioned above, to equate the performance of the general 

public and engineering students, two manipulated cues were added in conditions in which 

success was expected to be higher than in Exp1a: 

6. Rotation angle. Rotation has been examined in metacognitive research with both 

verbal (e.g., upside-down presentation of words, Sungkhasettee et al., 2011) and non-verbal 

tasks (e.g., mental rotation, Ariel et al., 2018). In Exp1a, in all pairs, one shape was rotated 

90° relative to the other (Figure 2, Panel A). In Exp1b and Exp1c, the values were no 

rotation (0°), 90°, or 180° (Figure 2, Panel B). Based on findings with the classic mental 

rotation task (Shepard & Metzler, 1971), I expected that larger rotations would make the 

task harder (e.g., Parsons, 1995), with potentially a concomitant reduction in confidence. 

7. Base rectangle height. In Exp1b, with engineering undergraduates, the same 

stimulus set was used as in the other experiments, but in half the items the height of the 

component elements was shrunk by half, with the width remaining unchanged. See Figure 

2, Panel B relative to Panel A. I hypothesized that this manipulation would make it harder 

to systematically count the perimeter units, as the manipulated shapes were based on 

rectangular rather than square units. In reality, the essence of the task remained as before, 

as both compared shapes were shrunk in the same manner.  

All the examined cues were hypothesized to uniquely affect cue validity, cue 

utilization, or the correspondence between them in at least some of the examined 

conditions. From a methodological point of view, adding cues to the examined set must be 

done with care, as cues that have collinearity with others could distort the model results 

(see Cooksey et al., 1986; Karelaia & Hogarth, 2008). As a rule of thumb, a 0.3 correlation 

was used as a threshold for collinearity. Three other cues were considered for the present 

experiment but were excluded due to correlations higher than 0.3 with at least one of the 

cues defined above. The three excluded cues were related to differences between the two 

shapes in perimeter length, shape area, and the areas of the imagined rectangles 

encompassing each shape (maximum extent of additions to the basic rectangle).  
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2.1. Method 

2.1.1. Participants 

A power analysis for Exp1a using G*Power (Faul et al., 2009) revealed that for a 

hierarchical multiple regression model with one sample to achieve a power of 0.90, 48 

participants would be required with five cues and 51 with seven cues. Because this 

experiment was meant to be the basis for the following experiments, which examined two 

additional cues, a larger sample was used.  

For Exp1a, 80 participants were recruited from Prolific Academic (37% females, Mage 

= 29.5, SDage = 9.5). Participants were required to have fluent English and no literacy 

difficulties based on their self-report to Prolific, an approval rate > 90%, and experience of 

50 to 150 tasks (to avoid novices and participants who were too experienced). Participants 

were asked to devote about 15 minutes to the task without distractions and to use large 

screens (desktops or tablets) rather than mobile phones. This request was not enforced. The 

payment was 1.5 GBP, with a promised bonus of 25 pence depending on efficiency.  

Inclusion criteria were: (i) Participants had to successfully complete at least three 

attention verification items out of four (see Materials). (ii) For those who responded 

particularly quickly (less than 2SD of the sample), the success rate had to be higher than 

chance (33%). (iii) Confidence had to show some variability unless success was higher than 

90% and confidence was 100% for all items. (iv) Focus on the task window had to be 

higher than 75% of the time spent on the task. (v) A dummy statement included in a self-

report after the main task (see Materials) served as another attention check. (vi) At the item 

level, response time had to be less than 30 seconds (otherwise it was assumed the 

participant was distracted), and focus time on the window had to be greater than 50% of the 

time spent on the item. (vii) Finally, participants had to provide at least 45 usable items (out 

of 54) after the item screening. Participants were excluded only if they violated two or 

more of these criteria. 

For Exp1b and Exp1c, G*Power indicated that 44 participants would be required in 

each group to compare two groups via t-tests with an effect size of 0.5 and a power of 0.75. 

In Exp1b, participants were 105 engineering students (56% females, Mage = 25.3, SDage = 

3.2). They received a payment of 30 NIS (about 6.5 GBP). In Exp1c, the number of 

participants in each group was designed to match those of Exp1a. Therefore, 173 Prolific 
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users were recruited (40% females, Mage = 32.8, SDage = 11.1). In both experiments, the 

inclusion criteria were as in Exp1a.  

2.1.2. Materials 

The stimuli were pairs of shapes with the same basic shape size, 12 or 24 squares. See 

the entire stimulus pool in Figure 3. Three pairs were used for the instructions and excluded 

from the data analyses, and four easy pairs were used for attention verification (criterion i 

above) and were included in the analyses. In addition, for Exp1b, a 3-shapes version of 

each pair was created, with the new shape added in the middle. The location of the correct 

solution was unchanged. When the solution was EQUAL in the 2-shapes condition, the 

middle shape had the longest perimeter, making MIDDLE the correct solution. 

Following the main task, participants responded to several self-report questions on a 

1–7 scale. The last among them was a dummy statement used as an attention verification 

criterion (v above); the question instructed participants to ignore the statement and respond 

with a specific number on the scale. 

Figure 3 
Stimulus pool used to generate the pairs for the Comparison of Perimeters (CoP) in 
Experiment 1, in all its variations.  
 
 Shapes generated from a basic shape of 12 squares, with a perimeter of 14 units.  

 
Shapes generated from a basic shape of 24 squares, with a perimeter of 20 units:  

 
2.1.3. Procedure 

Participants were informed that they would see 54 pairs (or triplets) of geometric 

shapes based on rectangles. For the 2-shapes comparisons they were instructed to 
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indicate which, if either, of the shapes in each pair, had a longer perimeter, by 

responding LEFT, EQUAL, or RIGHT. In the 3-shapes comparisons, they were 

simply asked to identify the shape with the longest perimeter; the EQUAL option was 

replaced by MIDDLE. A multiple-choice verification question ensured that all 

participants understood the task before continuing. Participants solved an example and 

rated their confidence on a continuous scale running from 33%, labeled “A wild 

guess,” to 100%, labeled “Definitely correct.” Participants had to move the cursor 

away from its starting point.  

The first two practice pairs were based on 12 squares, while the third introduced a 

pair based on 24 squares. The third item was quite challenging. The next screen presented 

its correct answer, which was EQUAL (or MIDDLE), with the statement “This item is 

certainly not trivial!” Next, the bonus scheme was explained. Participants in all Efficiency 

conditions were told that previous participants had succeeded in about 70% of the items on 

average and that their average efficiency was about five correct solutions per minute, with 

the most efficient participant providing ten correct solutions per minute. Providing at least 

five correct solutions per minute entitled participants in Exp1a and the Exp1c Efficiency 

condition to a bonus of 25 pence. In Exp1b, with undergraduates, the expected efficiency 

was explained, but no monetary bonus was offered. An understanding verification question 

appeared, followed by a message repeating the emphasis on combining accuracy and speed.  

In Exp1b, participants first completed a demographic questionnaire. Demographic 

information in the other experiments was collected by Prolific Academic.  

In Exp1c, with the detailed instructions, participants were shown how to count units 

along the perimeter of the basic shape (left-hand example in Figure 4). The procedure was 

then demonstrated with both more (middle example in Figure 4) and less misleading shapes 

(right-hand example in Figure 4). The misleading nature of the task was not mentioned. For 

the Accuracy group, it was explained that the average success rate was 70% (based on a 

pilot study for this condition) and that the most successful participants solved all problems 

correctly. Those who correctly solved at least 70% of the problems received a bonus. 
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Figure 4 
Illustrations included in the detailed instructions of Exp1c for how to calculate 
the perimeters of shapes in the Comparison of Perimeters (CoP). 

 

For the task itself, the shape pairs (or triplets) were presented one by one in random 

order, with the exception of the four attention verification items, which were distributed 

uniformly for all participants. After every 10 items, a progress message appeared (e.g., 

“You have so far completed 40 out of 54 items”). The final section comprised the self-

report questions with the final attention check. 

2.2. Results and discussion 

Applying the inclusion criteria for all experiments, in Exp1a, four participants (5%) 

were excluded, leaving 76 participants. In Exp1b, four participants (4%) were excluded, 

leaving 101 participants randomly divided into 52 in the 2-shape conditions and 49 in the 3-

shape condition. In Exp1c, 15 participants (9%) were excluded, leaving 158 participants 

randomly divided into 76 in the Efficiency condition and 82 in the Accuracy condition. 

2.2.1 Comparing the means among the five groups 

Descriptive results for the five groups in the three experiments are presented in Table 

1. In the baseline, Exp1a, it is evident that the task, though quick and simple to explain, is 

not straightforward. Importantly for the purpose of the present study, the success rate of 

53% allows room for variability in both success and confidence. Probing into the source for 

the difficulty revealed that the task was much harder when the correct answer was EQUAL 

(M = 26%) than when it was LEFT (M = 64%) or RIGHT (M = 84%). This was the basis 

for designing the 3-shapes condition for Exp1b. As commonly found with many other 

tasks, overconfidence was pronounced. Response time in this task was similar to that 

commonly found with memorization tasks (e.g., 4–9 sec., Koriat et al., 2006; 4–7 sec., 

Undorf & Ackerman, 2017). The main measure that reflects the success–confidence 

relationship is resolution. The mean resolution in this study was positive, but somewhat 
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lower than that found with memorization of both words and pictures (.28–.45; Bröder & 

Undorf, 2019; Undorf & Bröder, 2021). Resolution is strongly associated with the 

misleading nature of the task. A question of interest here is to which cues confidence was 

sensitive, and to what extent relative to the other considered cues. 

Table 1 
Experiment 1 – Comparison of Perimeters (CoP): Means (SD) of classical measures in five 
groups across three sub-experiments. 

a,b,c  Significant pairwise differences in dependent variables between groups across all experiments, p ≤ .05.  

 

The 2-shapes condition in Exp1b was highly similar in its methodology to Exp1a, 

with a different population and two additional manipulated cues. A one-way Analysis of 

Variance (ANOVA) comparing the two experiments pointed to a higher success rate in 

Exp1b, despite the two additional cues, and equivalent confidence, which resulted in 

attenuated overconfidence. More time was invested by Exp1b’s undergraduates, suggesting 

higher motivation, despite the absence of a monetary bonus. However, this group showed 

lower solving efficiency than the sample from the general public in Exp1a, reflecting that 

although more time was invested, the success rate did not rise proportionally. Thus, we see 

differences between Exp1a and its close replication. Notably, the resolution was equivalent 

to that found in Exp1a, which is central to using BEVoCI. The question of interest is 

whether this similar resolution “hides” differences in the cues predicting success and 

confidence. 

Experiment + 
Instruction 

Exp1a – Basic Exp1b – Basic Exp1c – Detailed 

Population General public Undergraduates General public 

Motivation focus Efficiency Efficiency Efficiency Efficiency Accuracy 

Task type  2 shapes 2 shapes 3 shapes 2 shapes 2 shapes 

Success rate (%) 53 a 
(10.3) 

63 b 
(12.7) 

71 c 
(16.8) 

61 b 
(15.8) 

66 bc 
(18.8) 

Confidence (%) 80 ab 
(10.1) 

78 a 
(9.2) 

78 a 
(8.8) 

81 ab 
(9.6) 

84 b 
(10.1) 

Overconfidence 26.9 c 
(14.4) 

15.6 b 
(14.5) 

7.5 a 
(16.4) 

20.3 bc 
(12.8) 

17.8 b 
(15.5) 

Response time (sec.) 5.0 a 
(3.4) 

7.9 ab 
(4.6) 

9.3 b 
(6.2) 

10.1 b 
(7.3) 

14.6 c 
(10.7) 

Efficiency (correct 
answers/min.) 

8.2 d 
(3.6) 

6.3 bc 
(3.3) 

7.1 cd 
(5.0) 

5.1 ab 
(2.8) 

4.2 a 
(2.7) 

Resolution (gamma) .22  
(.21) 

.26  
(.20) 

.34 
(.30) 

.24 
(.25) 

.24  
(.34) 
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Comparing the 3-shape condition to the 2-shape conditions of Exp1a and Exp1b, 

given the highly similar tasks and response requirements, the differences are striking. First, 

as expected, success in the 3-shape condition was greater than in both 2-shape conditions. 

This finding helps reject overload as a reason for the changes in cue integration. Mean 

response time was longer than in Exp1a, and efficiency was between the efficiency levels 

seen in the previous 2-shapes conditions, but not significantly different from either. Mean 

confidence ratings were blind to the higher success rates in the 3-shapes condition, yielding 

attenuated overconfidence.  

Turning to Exp1c, as can be seen in Table 1, almost no differences were found 

between the Efficiency and Accuracy conditions in the classic dependent variables, but in 

both cases, success rates were higher than in Exp1a. This came at the price of longer 

response times in the Accuracy group than in the Efficiency group; and in both cases, time 

invested was more than double the time participants invested in Exp1a, which harmed 

efficiency. Confidence and resolution were not affected by the instructions, while 

overconfidence was significantly attenuated only in the Accuracy group.  

2.2.2 BEVoCI—Cue utilization and cue integration across the five groups 

Now, we turn to the BEVoCI methodology to consider the relative contribution of 

each cue and to compare cue validity and cue utilization. The code and data appear in OSF: 

https://osf.io/jgn54/?view_only=d66bed9658d14932ab8a1bd86b1dec97. As with any within-participant 

correlations, gamma used for calculating resolution included, the first stage was to exclude 

participants who showed no variability in either confidence or accuracy (i.e., measures for 

all items were the same). These included two participants (2%) in Exp1b, four (2.5%) in 

Exp1c, and none in Exp1a.  

As described above, a methodological advantage of BEVoCI is that multiple cues can 

be examined at the same time, while controlling for all other cues. Prior to the analyses, all 

independent and dependent variables were standardized. All cues were entered into one 

hierarchical multiple regression model predicting success and another predicting 

confidence for each experimental condition separately using the R 4.1.0 package nlme 
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(Pinheiro et al., 2019).1 In both models level 1 was the items and level 2 was the 

participants. Data were modeled as a linear function of the cues related to each response, 

plus the participant’s “random” shift. The beta coefficients and their significance are 

reported in Table 2.  

 

 

1 R command for Experiment 1: model.success<-lme(Accuracy_dv_c ~ 1 + Serial_order_iv_c  + 
Perimeter_area_congruency_iv_c + Basic_shape_area_iv_c + Difference_in_edges_iv_c+ 
Response_time_iv_c, random = ~1|Username, data = raw_data). All predictors were centralized (denoted by 
c). The model for predicting confidence was the same with Confidence_dv_c instead of Accuracy_dv_c. 
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Table 2 
Cue validity and cue utilization in Experiment 1 with the Comparison of Perimeters (CoP): Results of hierarchical multiple regression 
analyses, presented as standardized β of all relevant cues for each experimental group when predicting success and confidence.  
Experiment Exp1a – Basic Exp1b – Basic + Rotation + Height Exp1c – Detailed instructions 
Population General public Undergraduates General public  

Manipulation Efficiency 
2 shapes 

Efficiency 
2 shapes 

Efficiency 
3 shapes 

Efficiency 
2 shapes 

Accuracy 
2 shapes 

DV 
IV 

Success Confidence Success Confidence Success Confidence Success Confidence Success Confidence 

Serial order .01 -.01 .06** -.03 .02 .03 .00 -.04** -.01 -.06** 
Perimeter–area 
congruency 

.41*** .01 .20*** .01 .11*** .02 .31*** .03** .28*** .00 

Basic shape area -.08*** -.19*** -.14*** -.20*** .03 -.15*** -.08*** -.16*** -.07*** -.17*** 

Difference in 
edges  

.20*** .12*** .20*** .12*** .07*** .07*** .03* .07*** .02 .04*** 

Rotation angle   -.04 .00 -.04* .00 .01 .02 .00 -.02 
Height    .05** .04** .06** .04*     
Response time .02 -.07*** .03 -.07*** .03 -.13*** .02 .00 .03 -.03 
Note.  Significance of a cue as a predictor, *** p ≤ .001; **p ≤ .01; *p ≤ .05 
Gray font: A match between cue validity and cue utilization. Bold fonts: Significant mismatch between the association of the cue with 
success and with confidence, p < .05. Larger font indicates a change in direction, from no significant association to a significant one, 
or opposite associations of the cue with success and with confidence. 
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In the next stage, a combined model was used. In this model the data were 

duplicated, once with Measure_type = “success” and Measure taking success 

(dichotomy), and once with Measure_type = “confidence” and Measure taking 

confidence (continuous). This allowed comparing the contribution of each cue to the two 

measures by obtaining a significance level for the cue*Measure_type interaction. The 

differences are highlighted in Table 2. The aim was to expose the cues that generate 

biases, through confidence being over- or undersensitive to changes in success.  

Starting with the baseline in Exp1a, the comparison between cue validity 

(predicting success) and cue utilization (predicting confidence) is striking. Perimeter–area 

congruency, the misleading cue identified by Stavy and Babai (2008) with much easier 

task items, was a strong predictor of success here as well. Notably, however, it was not 

used as a cue for confidence despite the stimuli being more complex than the original set, 

and there was no ceiling effect. Figure 5 Panel A clearly displays the insensitivity of 

confidence to the perimeter–area congruency, with overconfidence in the incongruent 

task items but good calibration in the congruent task items. This good calibration 

suggests that the task itself was not misleading, but that area had a particularly 

misleading power. 

Basic shape size (12 or 24 squares) negatively affected success in the task, and 

confidence reflected this direction properly with a slight bias. See Figure 5 Panel B. 

Nevertheless, the BEVoCI analysis showed bias in this cue as well, with the regression 

coefficients for confidence significantly stronger than for success. This bias is not 

immediately evident in the figure, though it should be noted that figures do not exclude 

variance explained by other cues in the regression models. The difference in predictive 

power may originate in the smaller errors of the mean for confidence than for success. 

This is a type of bias that so far has been overlooked in metacognitive research.  

In Figure 5 Panel C, the bias generated by the difference in edges is clearly evident, 

as confidence was less affected by this cue than success. In particular, when the 

difference in edges was small, participants showed considerable overconfidence, while 

when this difference was large their confidence was well-calibrated. Even after 

controlling for all other cues associated with the perception of difficulty, response time 

still generated a bias, though weak. The finding that serial order did not affect either 
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success or confidence is notable as well. It is possible that learning from experience and 

fatigue balanced each other out. Confidence, though, was not biased by serial order. 

Figure 5 
Exp1a—Examples of biases in the Basic Efficiency condition.      

   
Note.  Panel A demonstrates insensitivity of confidence to changes in success due to perimeter–area 
congruency. Panel B demonstrates oversensitivity of confidence to changes in success, expressed 
mainly in attenuated variance. In both panels, error bars represent standard errors of the means. Panel 
C demonstrates insufficient sensitivity of confidence ratings to the effect of the difference in edges. 
The percentages above the X-axis show the proportion of pairs characterized by an edge difference 
of 0, 2, 4, or 6 units. 

As can be seen, Exp1a provided an initial probe into sources of bias in a novel 

meta-reasoning task. Notably, the results already demonstrate the value of BEVoCI in 

considering multiple cues simultaneously. Furthermore, in using a visual task, the 

experiment exposed heuristic cues and biases not considered previously. In particular, the 

results revealed four different types of dissociations between success rate and confidence, 

showing a decisive double dissociation between cues that predict success and those 

predicting confidence. First, for perimeter–area congruency, confidence was totally blind 

to effects on success; second, for the difference in edges, confidence was insufficiently 

sensitive to the cue; third, for basic shape area, confidence was too sensitive to cue 

variations; and fourth, for response time, confidence showed a false negative tendency. 

All these effects were found within the same task and group of participants. Thus, clearly, 

different factors affect success and confidence and call for attention as part of the effort 

to identify biases and ways to overcome them. 

Turning to comparisons among the conditions, I first describe the BEVoCI findings 

from Exp1b’s 2-shapes conditions, which replicated Exp1a with the undergraduate 

population. See Table 1 and Table 2. As expected, the engineering undergraduates 

achieved better success, but interestingly, their resolution remained comparable, meaning 
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the engineering students were no better than the general public at discriminating between 

correct and wrong responses, despite their greater experience with mathematically 

oriented challenges. All cues which affected either success or confidence in Exp1a—

perimeter–area congruency, basic shape area, difference in edges, and response time—

generalized with this population. Several differences were also found. Serial order was 

positively predictive of success, indicating learning from experience here but not in 

Exp1a. However, this learning was not reflected in confidence ratings and thus generated 

a bias. Perimeter–area congruency was still misleading, but its effect on success was 

attenuated relative to Exp1a, and it was still not reflected in confidence. Concerning the 

two new cues, the rotation angle was not predictive of success and was not misleading for 

confidence, unlike what was expected based on the mental rotation task (Parsons, 1995). 

The height manipulation predicted success and was reflected properly in confidence.  

The malleability of cue weights is evident in the 3-shapes version of Exp1b. Four 

cues were utilized properly for confidence: serial order, number of edges, rotation angle, 

and height. To statistically compare the two versions of the biases that remained, I ran 

two regression models, similar to the BEVoCI model, one for success and one for 

confidence, with the addition of the task version and its interaction with each cue. The 

biasing effect of the perimeter–area congruency on success was further attenuated 

relative to the 2-shapes version, t(5294) = 3.82, p < .0001 (the latter was already 

attenuated relative to Exp1a). However, perimeter–area congruency was still ignored in 

confidence ratings, with no difference between the two task versions, t(5294) = .28, p = 

.78. Basic shape area became non-predictive of success, which is impressive and 

significantly different from the findings with the 2-shapes version, t(5294) = 6.12, p < 

.0001; but its effect on confidence remained, though somewhat attenuated, t(5294) = 

1.76, p = .08, indicating a more pronounced bias (larger beta difference) than in the 2-

shapes version. The biasing effect of response time also grew, as there was no change in 

its association with success, t(5294) = .62, p = .53; but it became more strongly 

associated with confidence, t(5294) = 2.69, p = .007. Thus, the 3-shapes version was 

easier in terms of success and was also overall less misleading than the 2-shapes version 

of the task, but the detailed analysis did expose biases that were weaker in the 2-shapes 

version. 
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Generalizing Exp1a, both conditions in Exp1b revealed double dissociations, with 

cues affecting success more than confidence, confidence more than success, neither, or 

both. Thus, although the engineering undergraduates did better in the task, they were 

misled by item-level cues in a way comparable to the general public.  

Exp1c included detailed instructions for the task in two conditions, with an 

emphasis either on efficiency, as in the previous conditions, or on accuracy. As 

mentioned above, success improved with the detailed instructions, but at the price of 

efficiency. As for cue validity and cue utilization, looking into Table 2 reveals that the 

detailed instructions were effective in both groups in eliminating or attenuating most 

biases found in Exp1a. However, both perimeter–area congruency and basic shape area 

remained persistently predictive of success and misleading for confidence, showing the 

double dissociation of confidence as insufficiently sensitive to the former and 

oversensitive to the latter. Comparing the two groups of this experiment statistically 

revealed few significant differences, with none having p < .045 (details available on 

request). Minor biases were generated by serial order and response time. On the other 

hand, clarifying the inconsistent results in Exp1b, rotation angle was non-predictive of 

success and not biasing for confidence.  

To sum up, as suspected by Stavy and Babai (2008), the CoP is a highly misleading 

task that generates both response mistakes and confidence biases. The present experiment 

demonstrates that this is the case not only for schoolchildren but also for adults—even 

adults with strong mathematical backgrounds or who received detailed instructions. 

However, the focus of the present study goes beyond this particular task. Using BEVoCI 

allowed exposing impressive cue integration and its malleability across populations, 

instructions, and task variations, despite having similarly mediocre resolutions across 

them. This study demonstrates the effectiveness of exposing multiple sources for 

mistakes and confidence biases within one group of participants. In terms of educational 

design, BEVoCI allows exposing which bias sources are stronger than others, which were 

attenuated by instructional manipulations, and which remained persistent even when 

success rates improved. In particular, we see that background knowledge (Exp1b) did not 

immunize participants against confidence biases, while detailed guidance with 

instructions designed to promote efficiency attenuated most biases (Exp1c). 
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3. Experiment 2: Exposing Biases in a Novel Task 

Experiment 1 used a task where prior knowledge was available about a central 

factor, namely perimeter–area congruency, likely to be misleading for confidence. 

Experiment 2 demonstrates the use of BEVoCI when no prior knowledge about biasing 

factors for confidence is available.  

The Missing Tan Task (MTT) is a novel non-verbal task. It is based on a physical 

game called Tangram (https://en.wikipedia.org/wiki/Tangram; see Figure 6), in which 

silhouettes must be formed by positioning seven geometric pieces (tans)—a square, a 

parallelogram, two large triangles, two small triangles, and one intermediate triangle. As 

mentioned above, this game has been used in educational settings to help teach geometry 

and spatial reasoning (Bohning & Althouse, 1997; Lee et al., 2009). In the multiple-

choice task developed for the present study, all silhouettes were generated from six out of 

the seven pieces (see Figure 7). Participants’ task was to identify the missing piece when 

viewing the static silhouette, without manipulating physical pieces.  

Figure 6 
An example of the original Tangram game. 

  
Note.  Players are presented with a  
silhouette (left) and must position seven 
geometric pieces (tans) to form the solution 
(right). 

Figure 7  
An example of a Missing Tan Task (MTT) item.  

 

Pilot studies were used to develop a stimulus set comparable to the basic version 

of the CoP in global task difficulty and item difficulty range. Since MTT items take 

longer to solve than CoP items, only 30 items were used rather than 54—still enough to 

support robust within-participant analyses. The instructions, bonus schemes, and online 

sample selection criteria were as similar as possible to those in Experiment 1.  
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In the absence of prior research with this task, general metacognitive research as 

well as insights from the CoP offered potential biasing factors. The following cues were 

hypothesized to affect objective and/or subjective difficulty: 

1. Serial order. As before, experience with the task may yield benefits from learning, 

detriments due to boredom and fatigue, or both.  

2. Silhouette area. Unlike in the CoP, in the MTT, the area can be a relevant cue for 

success. Silhouette area can take three values, depending on the missing piece: one of 

the two large triangles (A in Figure 7); one of the two small triangles (B); or one of the 

three other pieces (C, D, and E), which differ in shape but have the same area. The 

example in Figure 7 is of the last type because the missing piece is the parallelogram 

(C). If a triangle A or B is missing, the silhouette area uniquely indicates the correct 

answer, which might make the task easier. However, smaller shapes have more 

potential locations in the silhouette than larger ones. This consideration leads to the 

prediction that the task is hardest when B is missing. The question is whether 

confidence properly reflects the factors that indeed affect success.  

3. Rotated pieces. The number of pieces that must be rotated or flipped relative to their 

representation in the legend. Although when using the CoP, rotation did not affect 

success or confidence, classic studies indicate that tasks which require mental rotation 

are more challenging (Shepard & Metzler, 1971). In the example in Figure 7, the two 

large triangles (A) and the square (E) are oriented as in the legend, while the other 

three pieces, both B pieces and D, must be rotated. 

4. Perceived nameability. Lauterman and Ackerman (under review) found the perceived 

nameability of components within Raven matrices to be a misleading cue for 

metacognitive judgments of solvability. Here, in a pre-test with a different sample (N 

= 80), participants judged on a Likert scale how easy it was to name each silhouette. 

The Tangram and MTT tasks were not mentioned. The means were attached to each 

stimulus. 

5. Description length. The same pre-test sample was asked to describe each silhouette 

shape as briefly as possible. Shorter descriptions were expected to represent more 

familiar shapes than those requiring more words. Familiarity was expected to be a 

misleading cue that could distract participants from the components of the silhouette, 
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similarly to the misleading effect of familiarity and accessibility underlying other 

metacognitive judgments (Ackerman & Beller, 2017; Koriat & Levy-Sadot, 2001). 

Thus, the average number of words used in the description was used as a potential cue. 

6. Response time. Time elapsed from figure display until participants chose one of the 

answer options, as in Experiment 1. 

The number of edges in each silhouette, the length of the perimeters, and the areas 

of the imagined rectangles encompassing each silhouette were also considered here as 

potential cues. These attributes had correlations greater than .30 with other considered 

cues and thus were not included in the analyses. 

As in Experiment 1, I aimed to identify which considered stimuli characteristics 

predict success, and then to identify underutilization, overutilization, and well-adjusted 

cues for confidence. Exposing biasing factors is required for guiding future attempts to 

improve solving success and monitoring accuracy. 

3.1. Method 

3.1.1. Participants 

The sample size was chosen to be similar to that used in the basic condition of the 

CoP with the general public (Exp1a). The initial sample comprised 85 Prolific users (41% 

females, Mage = 26.5, SDage = 7.2). The basic payment was 2.4 GBP with a potential 

bonus of 25 pence. 

3.1.2. Materials  

The main stimuli were thirty silhouettes, each comprised of six out of the seven 

possible pieces. The legend showing the seven pieces and the question “Which shape is 

missing?” appeared on the screen throughout the task. See Figure 7. The confidence scale 

ranged between 20% (chance level) and 100%. 

3.1.3. Procedure 

The procedure was as similar as possible to that of Experiment 1. In particular, 

participants were incentivized to focus on efficiency. At the start of the task, participants 

solved three practice problems, which did not count toward the bonus.  

3.2. Results and discussion 

Four participants were excluded based on the same selection criteria as in 

Experiment 1, leaving 81 participants for the data analyses. Descriptive results are 
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presented in Table 3, in the same format as in Table 1. Comparing the findings to the 

basic condition of the CoP (Exp1a), participants achieved similar success rates. This was 

an important goal when designing the tasks. Items in the MTT task required more time 

than solving CoP items. The average time invested was similar to that spent on 

intermediate-difficulty Raven matrices (Ackerman et al., 2020). 

Before the main analyses, participants were screened for lack of variance in success 

or confidence, as in Experiment 1. No one had to be excluded under this criterion.  

Table 3 
Experiment 2 – Missing Tan Task: Means (SD) of classic measures. 

Instructions Basic 
Population General public 
Motivation focus Efficiency 
Success rate (%) 49 (14.4) 
Confidence (%) 73 (8.1) 
Overconfidence 23.6 (15.8) 
Response time (sec.) 22.4 (9.6) 
Efficiency (corrects/min.) 1.6 (0.8) 
Resolution (Gamma) .41 (.29) 

Table 4 
Cue validity and cue utilization in Experiment 2 – Missing Tan Task (MTT) with the 
general public: Results of hierarchical multiple regression analyses, presented as 
standardized β of all relevant cues when predicting success and confidence.  

DV 
IV 

Success Confidence 

Serial order .06** -.02 
Silhouette area -.09*** .01 
Rotated pieces .16*** .10*** 
Perceived nameability  -.07*** .03 
Description length .05** .01 
Response time -.08*** -.27*** 

NOTE.  Significance of a cue as a predictor, *** p ≤ .001; **p ≤ .01; *p ≤ .05 
Gray font: A match between cue validity and cue utilization. Bold fonts: Significant mismatch 
between associations of the cue with success and with confidence, p < .05. Larger font indicates 
a change in direction, from no significant association to a significant one, or opposite associations 
of the cue with success and with confidence. 
 

The beta coefficients of the BEVoCI models are presented in Table 4. All six 

examined cues were predictive of success, while only two reliably predicted confidence. 

Specifically, the number of rotated pieces and description length were utilized properly, 
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while there was overutilization of response time and underutilization of serial order, 

silhouette area, and perceived nameability. Thus, we see here again a clear double 

dissociation between effects on success and on confidence. 

Figure 8 presents two discovered biases. First, the results support the possibility 

that the task was hardest when one of the smallest triangles was missing, on the basis that 

the smaller the piece, the greater the number of places where it could possibly be located 

in the silhouette. Confidence was not sensitive enough to this challenge, which resulted in 

pronounced overconfidence.  

Figure 8 
Examples of two biases in the Missing Tan Task (MTT). 

  

Note.  Panel A exposes that the task is hardest when a small triangle is the missing piece, 
but this is overlooked by participants, generating pronounced overconfidence. Panel B 
shows that perceived nameability affects success and confidence in opposite directions. 

Second, the associations of perceived nameability with success and confidence 

were in opposite directions, generating a bias. This bias source resembles other 

misleading cues associated with processing fluency (e.g., Ackerman et al., 2013; Koriat, 

2018; Thompson et al., 2013), but here we see this pattern with a continuum, rather than 

discrete levels, as seen with other cues previously examined (e.g., font size, Undorf & 

Zimdahl, 2019). 

To sum up, applying the BEVoCI data analysis to a novel task is clearly effective in 

exposing biases. The cues considered here were less predictive of confidence than in the 

CoP, as more variance remained to be explained by response time. This finding suggests 

that future research may consider additional potential biasing sources for the MTT. More 

broadly, this experiment provides food for thought toward intervention attempts. 

Pinpointing pitfalls as demonstrated here (e.g., overconfidence was greatest when the 
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smallest shape was missing) has broad implications for educational design, as these are 

the points learners need help with, and where they have the greatest potential for 

improving their success. See the General Discussion. 

4. Experiment 3: Reanalyzing Existing Data from an Educational Context 

A major advantage of BEVoCI is that it allows exposing biases in existing data. 

While this facility cannot replace systematic manipulations that control for alternative 

explanations, from a practical perspective the ability to expose several biases at once 

using data already collected benefits both research and practice.  

To demonstrate this strength of BEVoCI, I searched for published papers that met 

the following criteria: tasks with a clear-cut correct response for each task item, making it 

possible to decisively distinguish correct from wrong responses; several tens of items for 

each participant; more than a hundred participants; a metacognitive judgment collected 

for each item; and the presence of potentially misleading cues inherent within item 

characteristics, whether already recognized within the data or identifiable based on 

metacognitive theory. For coherence, I also aimed to find a study done in an educational 

context, using ecologically valid tasks that were similar in nature to those used in the 

other experiments of the present study. However, these latter specifications are not 

essential for using the BEVoCI method to expose cues and metacognitive biases.  

I chose to reanalyze data published online as part of research by Vuorre and 

Metcalfe (2022). The study included several tasks taken from the Regents exams 

administered by the Office of State Assessment of New York. I focused specifically on 

participants who solved algebra questions (https://www.nysedregents.org/algebraone/). 

These were included in two experiments with eighth-graders (1A and 1B, N = 84 in the 

algebra condition) and two experiments with adults (1E, N = 86, and 1F, N = 92). Vuorre 

and Metcalfe’s experiment 1B was a direct replication of their 1A, and so the two were 

merged in the present analysis. To avoid confusion with the experiments of the present 

study, hereafter I refer to their experiments as VM1AB, VM1E, and VM1F.  

All experiments made use of the same set of problems. Each participant solved 40 

problems, in either two (VM1E) or four (VM1AB and VM1F) sessions. The dataset 

contained participants with missing data. As I intended to use session number as a cue in 

the BEVoCI analysis, I included only participants with data for at least 25 problems 
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(meaning that the data must have been collected in more than one session). VM1AB and 

VM1E were done on paper, with confidence scales of 0–5 for VM1AB and 0–10 for 

VM1E. VM1F was computerized, with a 0–100 confidence scale. For consistency, the 0–

5 and 0–10 values were converted to a 0–100 scale by multiplying by 20 and 10, 

respectively. However, the fact that the original scales were not in percentage terms 

means that they cannot be used to assess over- or underconfidence (see Ackerman, 2019). 

Six cues were considered in the reanalysis as potentially biasing for confidence. See 

Figure 9 for an example. The cues were: 

1. Session number. VM1AB took place over four sessions on separate days, with 10 

problems in each. The children received a feedback session between tests. VM1E, 

with undergraduates, took place in two sessions held on the same day, with 20 

problems in each; participants received a mathematical tutorial after the first. VM1F, 

also with undergraduates, involved four tests in one meeting, with 10 problems in 

each. Thus, session number was available for VM1AB and VM1E, but not for VM1F. 

Figure 9 
Example of an algebra problem used in Vuorre and Metcalfe (2022). 

 
Note.  A problem taken from the June 2014 Regents exam, with the identifier A-
REI.A. The problem text included three lines, no graph, and a formula. 

 

2. and 3. Problem characteristics. Each problem had a non-unique identifier provided 

by the Regents board, which reflects problem characteristics relevant for state 

assessment purposes (e.g., A-REI.C). The first letter, A, indicates an algebra problem 

and appeared in all problems within the included data. The next three letters represent 



32 
 

 

four problem types: APR (Arithmetic with Polynomials and Rational Expressions); 

REI (Reasoning with Equations and Inequalities); CED (Creating Equations); and SSE 

(Seeing Structure in Expressions). The last letter had four values as well, A, B, C, and 

D2. I included the middle and last components as potential cues, recoding them based 

on the proportion of each type that was answered correctly across all participants. This 

recoding by success rate allowed examining whether confidence follows the same 

order as success rates for each characteristic. My numerical codes for the middle 

component were 1=APR, 2=REI, 3=CED, and 4=SSE, and for the last component they 

were 1=B, 2=C, 3=A, and 4=D. 

Based on previous research, I categorized all problems by three other 

potential misleading cues. See Figure 9. 

4. Question text length. Based on cognitive load theory, instructional text length is 

negatively related to performance (e.g., Leahy & Sweller, 2016; Walkington et al., 

2015). I categorized question texts into two groups: those with few lines of text (1 or 

2, 50% of the problems) and those with many (3 or more). I tested whether text length 

is indeed associated with success, then examined the extent to which this association 

is reflected in confidence. 

5. Graphs (yes/no). Classic guidelines for teaching mathematical concepts include 

visual representation as a key to designing successful study materials (Rau & 

Matthews, 2017; Tindall-Ford et al., 2020). However, in metacognitive research, 

several studies have pointed to potential upwards bias in metacognitive judgments 

generated by the concreteness of visual representations (Ackerman & Leiser, 2014; 

Ackerman et al., 2013; Serra & Dunlosky, 2010). In the dataset, about 14% of the 

problems included a graph. Assuming that the graphs were chosen to be helpful, the 

question is whether confidence reliably reflects the help they provide.  

6. Formulas (yes/no). A central challenge in algebra education is the interpretation of 

symbolic representations (Capraro & Joffrion, 2006). In the dataset, 69% of the 

 

 

2 More details about the coding scheme can be found at 
https://www.jmap.org/JMAPArchives/CurrentVersion/JMAPAI_REGENTS_BOOK_BY_PI_TOPIC.pdf. 
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problems included a formula. I examined how the presence of a formula affected 

success and confidence. 

Using a BEVoCI analysis enables addressing the following research questions: (i) 

What considered cues indeed predict success in this task? (ii) What cues underlie 

confidence? (iii) What is the relative balance among the considered cues? (iv) Which 

cues bias confidence relative to their predictive value for success? (v) In what respects 

are the three groups similar and different in cue validity and cue utilization? The group 

comparisons are of particular interest given previous findings that metacognitive 

processes when facing complex tasks are almost mature by the eighth grade (Koriat et al., 

2014), and in light of screen inferiority relative to working on paper in both cognitive and 

metacognitive processes (lower performance, larger overconfidence, and less effective 

adjustment to task conditions) in problem-solving tasks (Sidi et al., 2016; Sidi et al., 

2017) and in reading comprehension tasks among children and adults (Delgado et al., 

2018; Golan et al., 2018; Lauterman & Ackerman, 2014). Thus, this reanalysis can 

inform both developmental and human-computer interaction research. 

4.1. Method 

4.1.1. Participants 

The analyzed dataset included 262 participants: 84 middle-school children in 

VM1AB, 86 undergraduates in VM1E, and 92 undergraduates in VM1F.   

4.1.2. Materials  

The materials were 42 algebra problems from the Regents high school 

examinations administered in 2014 and 2015 in a multiple-choice test format. See 

example in Figure 9. 

4.1.3. Procedure 

The relevant procedure characteristics were detailed above. In particular, they 

included running the experiment on paper (VM1AB, VM1E) vs. on screen (VM1F); with 

confidence scales of 0–5 (VM1AB), 0–10 (VM1E), or 0–100 (VM1F); and with two 

(VM1E) or four (VM1AB, VM1F) sessions, taking place on the same day (VM1E, 

VM1F) or on separate days (VM1AB). The task included 40 items per participant in all 

designs.  
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4.2. Results and discussion 

Descriptive results of the three groups are presented in Table 5, as for Experiment 1.  

Table 5 
Experiment 3 – Reanalyzed algebra data from Vuorre and Metcalfe (2022): Means (SD) 
of classic measures. 

Experiment VM1AB VM1E VM1F 
Population 8th graders Undergrads Undergrads 
Medium Paper Paper Screen 
Success rate (%) 69.3 (15.5) 71.3 (19.4) 73.7 (18.0) 
Confidence  
(transformed to 0–100) 

71.3 (17.0) 69.1 (21.7) 71.1 (21.0) 

Overconfidence --- --- 2.0 (13.2) 
Resolution (gamma) .52 (.38) .54 (.43) .45 (.46) 

 Response time was not available in the dataset, and thus efficiency could not be 

calculated. The transformed confidence ratings (VM1AB, VM1E) reached levels highly 

similar to confidence elicited by a percentage scale. Nevertheless, as mentioned above, 

overconfidence cannot be calculated for VM1AB and VM1E, where the confidence 

scales were not in percentage terms. Interestingly, there were no significant differences 

among the groups, all ps > .24.  Mean success rates and resolution were higher than in the 

previous experiments, though neither reached the point of risking ceiling effects, while 

confidence was similar to that previously found. 

The BEVoCI analyses begin by examining collinearity among the cues considered. 

Given that session number was available in VM1AB and VM1E but not VM1F, its 

correlation with the other cues was calculated first. No correlation passed the .30 

threshold. Thus, session number is used as a cue for VM1AB and VM1E.  

Examining correlations among the other cues across all three groups revealed that 

the middle component of the problem identifying code (the three letters) was correlated at 

.36 with the presence of formulas, and at -.31 with the presence of graphs. This 

correlation likely reflects the propensity for certain problem types to contain formulas or 

graphs. Therefore, this cue was omitted from further analyses. The presence of graphs 

and formulas was negatively correlated, -.34. Although most problems included either a 

formula or a graph, there were nine problems (21.4%) containing neither and two 

problems (4.8%) containing both. Thus, they could not be combined into one variable. I 

chose to keep formulas as a cue over graphs because 69.0% of the problems had formulas 
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and only 14.3% had graphs, making the data split between problems with and without 

formulas more balanced and powered than for graphs. If there were theoretical reasons 

guiding favoring having graphs as a cue over formulas, this could be done as well. Thus, 

four cues were included in the present BEVoCI analyses: session number for VM1AB 

and VM1E, but not VM1F; and for all experiments, the last letter of the Regents standard 

identifier (A–D), text length (few/many lines), and presence of a formula (yes/no).  

Prior to the main analyses, participants were screened for variance in success rates 

and confidence ratings. This screening excluded seven participants who showed no 

variance in at least one measure (2.7%).   

Table 6 
Cue validity and cue utilization in Experiment 3, reanalyzed algebra data from Vuorre 
and Metcalfe (2022): Results of hierarchical multiple regression analyses, presented as 
standardized β of all relevant cues when predicting success and confidence.  
Experiment VM1AB VM1E VM1F 
Population 8th graders Undergraduates Undergraduates 
Medium Paper Paper Screen 

DV 
IV 

Success Confidence Success Confidence Success Confidence 

Session no. -.03 -.06*** .07* .06* --- --- 
Last letter .08*** .09*** .08*** .10*** .10*** .11*** 
Text length -.07*** a -.10*** -.06*** ab -.08*** -.02 b -.10*** 
Formula .10*** 0 .03 -.02 .03 -.04** 
NOTE.  Significance of a cue as a predictor, *** p ≤ .001; **p ≤ .01; *p ≤ .05 
Gray font: A match between cue validity and cue utilization. Bold fonts: Significant 
mismatch between associations of the cue with success and with confidence, p < .05. 
Larger font indicates a change in direction, from no significant association to a 
significant one, or opposite associations of the cue with success and with confidence. 

Table 6 presents the BEVoCI results. Clearly, all considered cues had predictive 

power for success and for confidence in at least some conditions. The analysis of session 

numbers for the VM1AB group showed no improvement with learning despite receiving 

feedback between sessions, and confidence was even reduced. The adults in VM1E 

improved from one session to the next, and this was reflected properly in confidence. 

Comparing the VM1AB and VM1E groups revealed that the adults benefited 

significantly more from experience, and this was reflected in both success, t(6355) = 

2.84, p = .005, and confidence, t(6355) = 3.52, p = .0004. The last letter of the standard 

identifying code was consistently a predictor of success that was utilized properly for 
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confidence, without bias, and this was the case equivalently across all three groups.  

The length of the problem text harmed success when answering on paper (VM1AB 

and VM1E), in line with numerous previous findings as reviewed above; and confidence 

reflected this negative effect properly in these groups. When adults worked on screen 

(VM1F) there was no harmful effect of problem length, with a significant difference from 

the children’s group, VM1AB, t(6572) = 2.28, p = .02, but not the adult VM1E group, 

t(6915) = 1.45, p = .15. However, confidence was still affected by text length, 

comparably to the other groups. The difference between success and confidence in VM1F 

reflected oversensitivity of confidence to text length. 

Lastly, the inclusion of formulas in the question helped children but not adults. This 

cue was not utilized by the children (VM1AB), nor by adults working on paper (VM1E), 

but was negatively utilized by adults working on screen (VM1F). The differences 

between children and both adult groups were significant for both success, t(9925) = 3.72, 

p = .0002, and confidence, t(9925) = 2.80, p = .005. Notably, the inclusion of a formula 

generated a bias in all groups, but with different directions. See Figure 10. Such 

differential effects across populations clearly challenge theoretical explanations. I call for 

future research to delve into this finding, and consider other biases with such differential 

effects on different populations. 

Figure 10 
Experiment 3—Success, confidence, and bias generated by the presence of a 
formula in the problem across the three groups, VM1AB, VM1E, and VM1F.      

  

In sum, Experiment 3 demonstrates the effectiveness of BEVoCI in shedding new 

light on previously collected data. Like both previous experiments, these reanalyses 

reveal impressive cue integration, and several sources for mistakes and confidence biases. 

Specifically, the detailed examination of confidence exposed it as being oversensitive or 

undersensitive to some task design features (respectively, text length in VM1F and the 
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presence of a formula among children in VM1AB), while it reliably reflected other 

aspects of the task (e.g., session number). Moreover, disparities between different 

populations in their susceptibility to misleading factors is an important aspect of 

assessment design that is too often overlooked. Calling the attention of learning and exam 

designers to such biasing factors is a central goal of educational research. 

5. General Discussion 

 The aim of the present study was to introduce the BEVoCI method as an efficient 

tool for exposing heuristic cues that may mislead people when self-assessing their 

success in cognitive tasks. I exemplified the methodology using cues for the 

metacognitive judgment of confidence in problem-solving tasks that downplay the role of 

vocabulary and semantic skills. Based on insights from previous research, several cue 

types were examined: cues inherent to the stimuli (e.g., edges and area); stimuli 

characteristics unrelated to the task goal (e.g., perceived nameability); manipulated cues 

orthogonal to the goal (e.g., rotation and height); and cues derived from the procedure 

(serial order). Some have discrete levels (e.g., basic shape area, rotation angle) while 

others vary over a range of possible values (e.g., perceived nameability, differences in the 

number of edges) that may be harder for participants to notice. 

5.1. Identifying Multiple Sources for Confidence Biases at Once 

As explained above, traditionally, researchers have examined single cues in 

isolation in dedicated studies. This approach can be illustrated by looking at each panel in 

the figures showing one bias as a main research outcome of this type. In addition, studies 

which identify double dissociations are rare; and most of those which exist employ two 

experiments, each dedicated to one direction of the dissociation (e.g., Metcalfe & Finn, 

2008; Sidi et al., 2020). Very few studies expose double dissociations using two groups 

within one sample in the same experiment (e.g., Ackerman & Zalmanov, 2012). Here, 

each experiment considered several cues as potential biasing factors, some of them with 

opposite effects on success and confidence, at the same time within one sample.  

The present study joins meta-memory studies (Undorf & Bröder, 2021; Undorf et 

al., 2018) in demonstrating that people can integrate multiple cues at the same time. In 

particular, in the present study confidence reflected the effects of between two and four 

cues at the same time. At the same time, the present findings highlight more than before 
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that each considered cue may lead to a unique bias, above and beyond other cues. 

Moreover, considering several cues at once also supports identifying new cues suspected 

to affect success and/or confidence on top of already known cues. To illustrate this point, 

rotation in both the CoP and MTT and height in the CoP affected success in some cases 

but never misled confidence. These findings alone would not warrant publication, but 

alongside the myriad biases exposed here, they paint a rich picture of cue integration. 

Moreover, examining the same cue across different tasks is important for exposing cues 

that people are particularly attuned to, and those that constitute persistent sources of bias. 

Both are valuable pieces of information of which educators should be aware. 

In all three tasks, the approach of considering multiple cues within one sample 

exposed double dissociations between effects on success and on confidence. Of course, it 

is not new that confidence is based on heuristic cues and is reliable only to the extent that 

the underlying cues predict success (Ackerman, 2019; Koriat, 1997). In line with the 

classic hard–easy effect (see Suantak et al., 1996), confidence was sometimes, but not 

always, less sensitive to changes in success than it should be (e.g., formula inclusion in 

Algebra problems for children but not for adults; see also, underconfidence with practice 

effect, Koriat et al., 2002). In contrast, confidence was found to be persistently 

oversensitive to response time—a phenomenon well-established in the metacognitive 

literature (e.g., Ackerman & Zalmanov, 2012). However, this oversensitivity diminished 

with the detailed instructions for the CoP task (Exp1c). Notably, the present study 

highlights an unknown case of oversensitivity of confidence, where basic shape area in 

the CoP generated a robust bias across five groups of participants that was not overcome 

with either instructions or background knowledge. This finding deserves further research 

to help clarify what kinds of cues yield such persistent oversensitivity. Researchers and 

practitioners may also define thresholds for what level of sensitivity to cues counts or 

does not count as a bias, depending on the context (e.g., mild bias in utilizing basic shape 

areas in the CoP; see Table 2 and Figure 5 Panel B).  

Notably, though, the analyses performed in the present study investigated cue 

utilization while assuming that group members integrate cues in a similar manner (see 

Wiggins & Kolen, 1971 for a similar approach). That is, I did not seek to identify the 

cues integrated uniquely by each participant. Recent metacognitive studies have shown 
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individual differences in cue integration (e.g., Undorf & Bröder, 2021; Undorf et al., 

2018). Differences between theory-guided subgroups may point to additional factors that 

affect cue integration, such as gender, culture, age, and background knowledge (see 

Hines et al., 2015, for comparing younger and older adults in meta-memory judgments). 

The BEVoCI can then be used to examine the differential contribution of each cue and 

interactions among cues across subgroups. Moreover, clustering participants by their cue 

integration patterns is yet another direction for future research into heterogeneity (see 

Cooksey et al., 1986).  

Experiment 1 and Experiment 3 included comparisons between populations, 

incentive structures (bonus schemes), and task-level manipulations (basic vs. detailed 

instructions, computer vs. paper presentation). Notably, the resolution was persistent 

within each task across all comparisons. Nevertheless, BEVoCI exposed several factors 

affecting success and changes in its predictors across conditions. Comparing the effects 

on confidence revealed that the same cue may act differently in different conditions, both 

in utilization (whether a cue is utilized or ignored) and in the biases it generates, 

establishing the malleability of cue integration. Consequently, researchers should be very 

careful when drawing conclusions regarding biasing factors, as a biasing factor in one 

condition or for one population may have a different effect in another setting.  

Importantly, as demonstrated in Experiment 3, the BEVoCI methodology can be 

applied to already existing datasets to expose cues and to identify task design and 

population effects on cue integration. Such discoveries should then be followed up by 

focused examination, to avoid post-hoc theorizing. By using the BEVoCI, follow-up 

studies may also expose changes in cue integration with variations of stimuli, task design, 

and/or population.  

The BEVoCI methodology is relevant more generally than demonstrated here. As 

with the requirements for  the dataset chosen for Experiment 3, it can be applied to any 

task with a clear correct answer for each item (rather than opinion-based or free design 

tasks) and enough items for each participant to ensure the robustness of the correlation 

and hierarchical multiple regression analyses at the participant level (ideally several tens 

of items, but even ten items could be sufficient given enough participants to ensure 

adequate power). For instance, when teaching a skill during an extended period, serial 
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order effects are the primary measure. However, identifying biasing factors that take 

effect beyond learning effects is of particular importance. This is demonstrated in the 

present study by the biases remaining in Experiment 1 even with the solid mathematics 

background knowledge of the engineering students (Exp1b) and when using detailed 

instructions (Exp1c), despite pronounced improvement in success (from 53% to 61–

71%). In such cases, if there is an improvement in success, biases for confidence and 

mental effort regulation are rarely considered, although they are prerequisites for long-

term achievement (Bjork et al., 2013; de Bruin et al., 2020; Roebers, 2017).  

5.2. Fluency and Goal-Oriented Self-Regulation 

Response time is often used in metacognitive research as a proxy for fluency. The 

theorizing behind this is that response time reflects the participant’s experience of the 

item as easy or difficult, which informs how she infers her chance for success (see Baars 

et al., 2020, for a meta-analysis). Undorf and Bröder (2020) concluded, based on a 

memorization task, that people take cues into account strategically, rather than bundling 

them into a single unified feeling of ease or difficulty. In that sense, response time’s 

contribution to cue integration when included in the BEVoCI analyses may reflect what 

remains after controlling for other considered cues that seem to hint at the difficulty of 

each task item (Undorf et al., 2022). It then follows that should researchers discover 

additional cues that contribute to the experience of difficulty, this might weaken the 

contribution of response time to the explained variance. Moreover, the findings of the 

present study suggest that cues may affect confidence in varying, and even opposing, 

directions on the same items, potentially leading to a complex inference of item difficulty 

that has not previously been recognized.  

Although response time reflects the solver’s experience of difficulty, it is also 

affected by strategic motivational variations, such that the higher the motivation, the 

more time people invest in the task in a goal-driven manner (Ackerman, 2014; Koriat et 

al., 2006; Undorf & Ackerman, 2017). Moreover, studies have shown that experimental 

manipulations in the lab, as well as in educational environments, can change whether 

solvers interpret effort as indicating difficulty, or motivation to succeed (Koriat & 

Ackerman, 2010; Oyserman et al., 2018; Smith & Oyserman, 2015). Thus, response time 

as a cue for metacognitive judgments requires a complex inference process. This 
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inference process has been found to develop throughout childhood and adolescence, and 

into adulthood (Koriat et al., 2014). In light of all these considerations regarding response 

time, the present study joins Undorf and Bröder (2020) in shaking the ground under the 

use of response time as a direct cue for metacognitive judgments, as doing so conceals 

information regarding the underlying bottom-up (cue-based) and top-down (strategic, 

motivational) processes involved. Instead, it seems necessary to delve into the detailed 

cues, instructions, and motivations that ultimately underlie the time one invests in each 

task item (Ackerman, 2014).  

5.3. Implications for Instructional Design 

Good instructional design can improve outcomes (e.g., Allaire-Duquette et al., 

2019; Carney & Levin, 2002; Michalsky, 2021; Sweller et al., 2019) and metacognitive 

processes (Baars et al., 2013; Carpenter et al., 2019). However, in many cases it is not 

clear what aspects of the design were effective and which were redundant. The BEVoCI 

methodology may provide insights into how different elements of instructional design 

affect learning. In the present study, as demonstrated in all experiments (Figure 5, Figure 

8, and Figure 10), the BEVoCI allowed exposing various types of monitoring biases. The 

detailed instructions in Exp1c attenuated and even eliminated some biases (e.g., 

difference in edges), but not others. Likewise, the BEVoCI can offer insights into the 

processes underlying successful and non-successful interventions; and it can be applied to 

answer questions that go beyond effects on success and general monitoring accuracy, 

such as whether learners reflect changes in success adequately in their metacognitive 

judgments. The BEVoCI can thus inform instructional design and interventions by 

allowing educators to focus improvement efforts on the weak points, where room for 

improvement is largest and biases are most pronounced, and on those populations which 

suffer from biases the most. 

Finally, assessment theory and practice can benefit from understanding biases in 

subjective judgments. For instance, Engelhard Jr et al. (2018) considered the effects of 

various cues on psychometric assessments of essay writing skills. One may also consider 

how manipulations affect different subjective evaluation contexts, like creativity (Kenett 

et al., 2021; Sidi et al., 2020), and professional assessments, such as medical skills and 
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decision-making (Beckstead, 2017; Norman & Eva, 2010). Exposing focused biases may 

be useful in improving the reliability of these important subjective processes.  
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